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1 Introduction

Three dimensional shape analysis has received increasing attention in recent years. MRI,
CT and other medical imaging systems, remote range sensors including Radar and Sonar,
and computer vision techniques such as structured light and shape from stereo provide three
dimensional volume or surface data.

Length measurement is an important element of shape analysis tasks; it is therefore not
surprising that perimeter estimation of two dimensional shapes has received considerable
attention in the last two decades. In three dimensional shape analysis, length estimation is
the key to various measurements on surfaces [1].

The principal difficulty in length estimation is that length along a continuous curve in
the preimage should be estimated from the chain code representation of the digitized curve.
Information is lost in the digitization process, and the length estimation problem would be
hopeless without incorporation of apriori knowledge. It must be assumed that the digitization
grid is fine enough such that the digitized curves are reasonable approximations of the original
continuous curves. This implies that curves can roughly be approximated by straight lines
within pixels or voxels (volume elements).

Reconstruction of the original curve by interpolation and subsequent measurement of
its length is computationally complex. Useful two dimensional length estimation algorithms
classify the chain code [2, 3] links according to simple properties, and obtain a length estimate
as a linear combination of the number of links in each class. These are referred to in this
paper as link classificationestimators. Their main advantage is their computational simplicity
that results from their local nature: the contribution of a chain code link to the total length
estimate depends only on its class, which is designed to depend on a few nearby links at
most. The design of such estimators consists of defining the classification rules and fixing
the weight constant for each class. Link counting estimators are degenerate link classification
estimators, in which the length estimate is proportional to the total number of links.

This paper is concerned with estimating the length of three dimensional curves. The

design procedure focuses however on straight lines: if curves can be approximated by straight



lines within small neighborhoods or even within single pixels!, then length estimators that
are optimal for straight lines perform very well on general curves. In particular, assuming
a uniform distribution of curve tangent orientations, then if the estimator is unbiased for
straight lines of uniformly distributed orientations, the estimation error for curves is very
small. The error approaches zero as the spatial resolution increases. It is however important
not to confuse the goal, i.e., estimating the length of general curves, with the design procedure
that is based on straight lines. In this paper, unlike references [5, 6], it is not assumed that
the curve to be measured is a straight line segment. Also notice that if sufliciently detailed
information on the distribution of local curvatures in the input curves exists, then for a given
finite spatial resolution it might be even better to optimize the design using circular arcs
rather than straight lines.

The organization of this paper is as follows. Section 2 reviews 2-D perimeter estimators.
3-D length estimation basics are considered in section 3. Section 4 is concerned with optimal
design of 3-D link counting estimators. In section 5 the relation between the length estimation
problem and the design of local distances for distance transformations is discussed, based on
results from reference [1]. Important properties of 3-D chain encoded digital straight lines
are derived in section 6, and applied to the optimal design of simple link classification length
estimators in section 7. Experimental results are reported in section 8 and conclusions are
discussed in section 9.

Preliminary results were reported in reference [7].

2 Brief Review of Two Dimensional Perimeter Estimators

The two dimensional perimeter estimation problem is to estimate the perimeter of a shape
from the chain code of its digitized contour. The digitization scheme and chain encoding
algorithm are an important part of the problem definition and should always be specified.

Koplowitz and Bruckstein [8] define a general class of link classification perimeter estima-

YA criterion for selecting the density of digitization grids is studied in reference [4].



tors

L=3 w{ipropPy} (1)

all P;

where P; is a link in the chain code, prop P; is a list of properties associated with P;, and ¥
is a function that classifies and assigns weights to the chain links.

Early perimeter estimators were derived from the length of the digitized contour. In the
framework of equation 1 and assuming 4-connected chain code representation, the chain links

were not classified and one simply substituted ¥ = 1 VPF; to obtain

L =N (2)

where N is the total number of links in the chain code.

Equation 2 defines a link counting estimator that is accurate for horizontal or vertical
straight lines. For other line orientations, the estimation errors are large, and biased in the
sense that the average estimation error (assuming a uniform distribution of line orientations)
is not zero. In fact, for straight lines the length is never underestimated. The estimator can
be made unbiased by setting ¥ to be an appropriate constant.

If 8-connected chain code representation is assumed, not all chain links contribute similarly
to the length of the digitized contour. In the framework of equation 1, ¥ can be set to 1 for

vertical and horizontal (even) links, and to v/2 for diagonal (odd) links. This leads to
L = N.+ V2N, (3)

where N, and N, respectively denote the number of even and odd links [2]. This estimator

is however also biased. Various estimators of the form

L = W.N, + ¥,N, (4)

have been suggested [9, 10], with W, and W, chosen to satisfy certain unbiasedness and
optimality properties.

Focusing on points (rather than on links) in 4-directional chain codes, it has been sug-
gested to classify points as “corner” or as “non-corner” points, and to use an estimator of
the form

L = W.N, + U,N, (5)



where N. and N,, respectively denote the number of corner and non-corner points, and ¥,
and V¥, are appropriate weights [8, 11]. Accounting for the number of corners has also been
suggested for perimeter estimators based on 8-directional chain code [12]. See reference [13]
for comparative study on 2-D link classification perimeter estimators.

Designing length estimators to satisfy optimality criteria in the case of straight lines
requires, for any straight line orientation, to predict the number of chain links in each class
specified in the estimation procedures. This is not difficult in the two dimensional case; see
references [3, 8, 12, 14]. For example, in the 4-connected chain code representing a long
digitized straight line of length I that makes an angle # with the positive z-axis (assume
without loss of generality # € [0, 7/4]), the number of horizontal links is L cosé and the
number of vertical links is L sin . Minority codes appear isolated, so the number of corner
points is 2L sin #, and the number of non-corner points is L cosf — Lsinf. The number of
links satisfying other simple properties can be similarly derived, enabling prediction of L as
a function of # and optimal design of length estimators.

The properties of the chain links that the above estimators use for classification are local
in the sense that the contribution of a chain link to the estimated length depends only on
its absolute direction (equations 3 and 4) or on its relative direction with respect to the
previous chain link (equation 5). One estimator suggested in reference [8] uses a larger finite
neighborhood.

It is known that in 4-connected chain code representation of infinite straight lines with
orientation § € [arctan1/(j + 1), arctan 1/j], there are only groups of j and 5+ 1 consecutive
horizontal links (“horizontal runs”) alternating with solitary vertical links. This observation
led Koplowitz and Bruckstein [8] to also suggest a perimeter estimator that classifies each
point according to the length of the longest run it belongs to. Thus, noncorner points are
classified according to the run to which they belong, and corner points according to the
longer of the two runs. An important characteristic of this estimator is that the number
of classes to which a chain point can be classified, as well as the size of the neighborhood
on which the classification is based, are in principle infinite, and are bounded only by the

finite dimensions of the image, hence this perimeter estimator is not local. In practice, the



number of classes can be bounded by assigning all points that belong to a run longer than
a certain limit to one class. If the contribution of a point that belongs to a run of length
j to the length estimate is taken to be /1 + j2, the estimator actually measures the length
of a corner-smoothing polygonal approximation of the shape, and is similar to Wechsler’s
algorithm [15]. By appropriate tuning, unbiasedness and other optimality properties can be
obtained. This is a bridge between link-classification local estimators, and estimators that

are based on interpolation of the continuous contour and measurement of its length.

3 The 3-D Length Estimation Problem

The precise definition of the curve digitization process is crucial to the design and analysis
of length estimators. Vaguely defined digitization schemes have been an obstacle to the
development of optimal length estimators in the two dimensional case. Yet, in two dimensions
the properties of digital straight lines obtained with various digitization schemes are quite
similar. In three dimensions the dependence of the digital contour on the specifics of the
digitization scheme is greater than in 2-D, so special care must be taken to clearly define the
digitization method and the procedure for obtaining the chain code.

In this paper it is assumed that the continuous space is divided into cubic voxels. The
digitization of a three dimensional curve consists of the voxels that the curve traverses. This
set of voxels can be uniquely represented by a 6-directional chain code. It is also possible
to represent a three dimensional curve by a 26-directional chain code, see Figure 1. In that
case a voxel that is connected to two diagonally connected voxels may be omitted. The
26-directional chain code of a three dimensional digital contour is in general not unique.
For example, a straight path between the two voxels (¢,7,k) and (¢ + 2,7 + 1,k + 1) can be
described by either

o A direct link (incrementing ¢) and a major diagonal link (incremeneting ¢, 7 and k), or

¢ Two minor diagonal links, one that increments ¢ and 5 and one that that increments ¢

and &.

We have eliminated this ambiguity by specifying a starting voxel, a direction on the contour



and by a “greedy” chain code generation scheme: if possible, add a major diagonal link; a
minor diagonal link is the second priority and a direct link comes at the third priority. Other
methods to obtain a 26-directional chain code representation can be defined; for a comparison
of digital representations of curves in 3-D space see reference [16].

The 3-D length estimation problem has recently been addressed in reference [5]. One
approach taken in that paper is direct extension to 3-D of the 2-D estimators defined by

equations 2 and 3. Assuming a 26-directional chain code, these estimators are

L =N (6)

and

L = Ny +V2N; +V3N; (7)

where N is the total number of links in the chain code, Ny is the number of direct links,
i.e., links that are parallel to one of the three main axes, and N, and N3 are respectively the
number of minor and major diagonal links in the chain code. Equation 6 describes a link
counting estimator; equation 7 defines a basic link classification estimator. The 2-D length
estimation experience suggests that these two 3-D length estimators are biased, and can be
improved.

The next section focuses on the properties and optimal design of link counting 3-D length

estimators. In particular, an unbiased estimator of the form

L =wN (8)

(that reduces to equation 6 if ¥ is set to 1) is developed.

4 3-D Length Estimation from the Total Number of Links

Consider a long straight line segment of length L (in pixel side units). Placing one of its
endpoints at the origin, the direction of the line is characterized by the angles 6 and ¢

defined in Figure 2. The differences between the coordinates of the endpoints are

Az = Lcosfcosyp (9)



Ay = Lcosfsing (10)
Az = Lsin. (11)

Symmetry allows to assume without loss of generality that 0 < ¢ < 7/4 and 0 < 6 <
arctan (sin ¢); this implies that Az > Ay > Az.

With 26-directional chain coding, the total number of links in the representation of the

line is
N = Az = Lcosfcos . (12)
Combining equations 12 and 8,
L = WL coshcosp. (13)
The estimation error is
L
e(d, ) = Z—l: Vcosfcosp — 1, (14)

bounded by

§W—1§g(0,cp)§\lf—1- (15)

In particular, by setting ¥ to 1, the error of the link counting estimator suggested in refer-
ence [5] (equation 6) is obtained, and is shown (as a function of ¢ and @) in Figure 3; it is
clearly biased.

To obtain an unbiased estimator assuming a uniform distribution of line orientations, ¥

should be chosen such that

7/4 rarctansine
/ / (8, ¢) cosfdbdy = 0. (16)
0 0

cos @ dfdy is a differential solid angle element expressed in the coordinate system used in this

paper.
Combining equations 14 and 16,

7/4 rarctansin ¢
\IJ/ / cos? B cos pdfdy = Q, (17)
0 0
where (), defined by

7/4 parctansin ¢
Q E/ / cos 8 dfde = 0.261799, (18)
0 0



is a solid angle (in steradians). Integration gives ¥ = 1.2031.

A simple unbiased link counting length estimator
L = 1.2031N (19)

has thus been obtained. The dependence of the estimation error in the case of straight lines

on # and ¢ is shown in Figure 4. The RM S error is

1 /7/4 rarctansing 2
ERMS = —/ / e2(8, ) cos 0 dfdy (20)
Q 0 0

and numerical integration yields epyrg = 0.12042, i.e., about 12 % .

The error of this unbiased estimator in estimating the length of straight lines is lower
bounded by —30.5% and upper bounded by 20.3% . It is possible to modify ¥ such that the
maximum absolute estimation error would be minimized. In particular, with ¥ = 1.2679 the
maximum absolute error is minimized at 26.79%, but the estimator is biased.

An unbiased link counting estimator for the case of 6-directional chain code representation
can be similarly designed. The total number of links in the 6-directional chain code of a

straight line is
N = Az + Ay+ Az = L(cosfcosp + cossin g + sin 6), (21)

hence

L = VL(cosfcos g+ cosfsin g + sinb), (22)

and the estimation error in this case is bounded by
U—1<e(d,0) <V -1 (23)
To achieve unbiasedness, ¥ must satisfy
7/4 rarctansin g
\If/ / (cos @ cos ¢ + cosfsin ¢ + sin f) cos @ dddy = Q. (24)
0 0
Integration yields ¥ = 0.6666, so finally

L = 0.6666N. (25)



The dependence of the estimation error in the case of straight lines on # and ¢ is shown
in Figure 5. With this value of ¥ the RM S error is ¢ = 10.1%, and the error bounds are
—33.3% and 15.5%. It is again possible to modify ¥ such that the maximum absolute error
would be minimized. This occurs at ¥ = 0.7321, and the resulting maximum error is again
26.79%.

To obtain more accurate length estimators, chain code links must be classified. To op-
timally design the weights, it is needed to predict how the links of chain encoded digital

straight lines would be distributed among the classes. This is studied in the next sections.

5 Length Estimation and Distance Transformations

Simple link-classification 3-D length estimators are of the form

L = U;N;y +UyNy + U3 N5 (26)

where Ny, Ny and N3 are the number of the direct, minor diagonal and major diagonal links
in the 26-directional chain code of the curve, and ¥y, ¥ and W3 are weights to be designed.

The estimation error is

>

VN + Vo Ny + W3 N3

(0. 0) = 7 - 1= - 1 (27)

¥y, ¥y and W3 should be selected to obtain unbiased estimation and minimization of the
RMS error over the set of straight lines in all possible orientations. Alternative optimality
criteria can be defined.

Consider the design of local distances for 3-D distance transformations [17]. For the case
of 3 3 * 3 neighborhoods, the distance from the origin to a point on a large sphere around

the origin is estimated to be
L = tyny + dyny + t3ng (28)

where nq, ny and n3 are the number of the direct, minor diagonal and major diagonal links
in the 26-directional chain code that represents the shortest path, and 1, 1o and 3 are
referred to as local distances, and need to be designed. The estimation error is

_ ting + Pang + t3ng
B L

e(6, ¢) = % ~1 -~ (29)

10



11, ¥ and 13 should be selected to obtain unbiased estimation and minimization of the RMS
error over all possible orientations.

At first sight, the design of optimal weights for 3-D length estimators seems similar to the
design of local distances for 3-D distance transforms. It has already been observed [1] that
the similarity is misleading and follows from the false assumption that Ny, Ny and N3 are
respectively equal to ny, ny and n3. The arguments prvided in reference [1] are as follows.

ny, ny and ng are very easy to calculate. Assuming that ¥y + 13 < 21bq, the shortest path
between two voxels on a 3-D grid always prefers a connection by a direct link and a major
diagonal link to using two minor diagonal links. Suppose without loss of generality that the
differences between the coordinates of the two end voxels of the path satisfy Az > Ay > Az.
Then nz must be equal to Az, ng is equal to Ay — nz and nq is equal to Ax — ny — ng. This
means that the minor diagonal link # — z never occurs. Verwer [17] uses this approach to
obtain the optimal local distances %1, ¥y and 3.

It may seem surprising that the situation is different in the design of length estimators,
especially since in two dimensions the optimal design of weights for length estimators is
mathematically identical to the design of local distances for distance transformations. This
stems from the fact that all possible digital straight lines that connect two given pixels in 2-D
have exactly the same number of direct and diagonal links in their 8-connected chain code.
Moving to three dimensions, consider the infinite group of all possible continuous straight
lines that pass through two distant end voxels. These continuous lines correspond to a set of
3-D digital straight lines and a respective set of 26-connected chain codes. The values of Ny,
Ny and N3 are in general not identical for all the chain codes. Suppose for example that the
differences between the coordinates of the end voxels satisfy Az > Ay > Az. Transitions
in the y direction between voxels along the line are thus infrequent, and transitions in the
z direction are extremely infrequent. In certain cases, transitions in the y and z directions
will indeed take place near each other. A major diagonal link will then be added to the
26-connected chain code. But in most locations along the long line, transitions in the y
and z directions will be separated by many transitions in the z direction. This leads to

minor diagonal links of the  — y type, as well as minor diagonal links in the z — z direction!

11



Chain encoding of an actually digitized line cannot always “force” the replacement of a minor
diagonal link in the z — y direction and a minor diagonal link in the 2 — z direction by a
direct link and a major diagonal link.

The important and surprising occurance of z — z links implies that Ny, Ny and Nj3 for
straight lines are not in general equal to ny, ny and nz. While nqy, ny and ns are easy to
compute, the calculation of Ny, Ny and N3 is more difficult. It is carried out in the next
section and is thus an important contribution in itself. The chain code probabilities for 3— D
digital lines are then applied to the optimal design of weights for 3-D length estimators. The
weights are certainly different than the local distances for 3-D distance transforms determined
by Verwer [17].

In distance transformations the chain code of the path that corresponds to the shortest
estimaled distance between the source and destination voxels is constructed by the algorithm.
For that case optimal results have been given by Verwer [17]. In length estimation problems,
the original continuous curves dictate the structure of their chain codes: not all digital straight
lines between voxels in 3— D correspond to the shortest estimated distance. This is a different
situation, and the results of [17] do not apply. Our research focuses on the length estimation
problem.

Beckers and Smeulders have recently published another related paper [18]. Even though
the paper does not make a clear distinction between length estimation and distance trans-
formations, then following the above discussion, it should be categorized as dealing with the
design of distance transformations. It is interesting to observe that the local distances found
by Beckers and Smeulders [18] are different than those of Verwer [17]. The differences are

partly due to the optimality criterion used in reference [18].

6 Chain Code Probabilities in the Representation of 3-D
Digital Straight Lines

Consider again a straight line segment of length L (in pixel side units) as shown in Figure 2.

Assume that L is large, and that (without loss of generality) Az > Ay > Az. Suppose this

12



line is represented by a 6-directional chain code; then only three link directions appear in the
chain code: z, y and z.
Let P(z), P(y) and P(z) denote the probabilities that a chain link picked at random will

respectively be in the z, y or z direction. Then

Ax
P =
() = o T A A (30)
thus
cos @ cos
P = . 1
(2) cosfcosp + cosfsing + siné (31)
Similarly,
cos @ sin @
P(y) = 2
(9) cosfcosp + cosfsinp + siné (32)
P(z) = sin (33)

cosfcosp + cosfsing + sinf’

Suppose that one of the z links is picked at random; the probabilities that the next link
is z, y and z are denoted P(z|z), P(y|z) and P(z|z) respectively. In a similar way the
probabilities P(z|y), P(yly), P(z|y), P(z|z), P(y|z) and P(z|z) can be defined, but note that
the assumption that Az > Ay > Az and the properties of digital straight lines dictate that
P(yly) = P(z]z) = 0.

A parametric representation of the line is

x(t) = zo+tcosbcosyp (34)
y(t) = yo+tcosbsing (35)
z2(t) = zp+1tsinf (36)

where (zg, Yo, 20) is a point on the line, and ¢ is the parameter. Assume without loss of
generality that the coordinate system origin is translated to an appropriate corner of a voxel
under consideration, such that (zg, yo, 20) is the point of entry of the line to that voxel,
0 < zg, Yo, 20 < 1, and within the voxel ¢t > 0.

If the current link in the chain code is x, then obviously z¢ = 0. For the next link to be

x, there must be ¢ > 0 that satisfies the following conditions:
tcosfcosp = 1 (37)

13



Yo + tcosfsing < 1 (38)

2o + tsinf < 1. (39)
Flimination of ¢ leads to
0 <y <l-—tangy (40)
tan @
0 <2z <1- . (41)
cos

Assume that the ratios Az/Ay, Az/Az and Ay/Az are irrational numbers. Recalling that
underlying straight lines are in the continuous domain, only a countable set of of pairs (6, ¢)
does not satisfy this assumption, so “almost all” pairs satisfy it, and a pair (6, ) picked
at random satisfies the assumption with probability 1. If L grows to infinity, and assuming
that the preceding z link was selected at random, yg and zp can be regarded as independent

random variables, uniformly distributed between 0 and 1. This implies that

tan @

cos

Plale) = (1 - )(1—taw). (42)

Under the same assumptions and using similar derivations, it can be shown that

tan @
P(ylz) = tangp <1 — QCOSL,Q) (43)
tané 1
P(z|z) = o (1 — —tangp) (44)
Cos 2
tan @
P =1- 45
(aly) = 1=y (45)
tan 6
P = 4
(o) = gt (16)
1
P(z|z) = 1- Etang.o (47)
1
P(ylz) = itango. (48)

Properties of digital lines dictate that in the chain code of a line satisfying the above

assumptions, an z link can be followed only by one of the following patterns:

e Another z link.

14



e A y link followed by z.
e A z link followed by z.
e A y link followed by z followed by z.
e A z link followed by y followed by =.

The probabilities that these patterns appear after a randomly selected z link are denoted
P(z|z), P(yz|z), P(zz|z), P(yzz|z) and P(zyz|z) respectively. P(z|z) has already been
determined (equation 42).

The conditions for the second pattern (yz) to follow an z link are:

tycosfcosp < 1 (49)
Yo +1licosfsing = 1 (50)
zo+tisinf < 1, (51)

which are the conditions for the next link to be ¥, and

(t1 +t2)cosbcosg = 1 (52)
lpcosfsing < 1 (53)
zo+ (t1 +12)sind < 1, (54)

that ensure that the consecutive link is again z. ¢; and {3 are two positive parameters. By

eliminating ¢; and {3 these conditions reduce to

1> y >1-tang (55)
tanf
1- > 2 >0. (56)
cos ¢

With yo and zp being again independent uniformly distributed random variables,

P(yz|z) = tang <1 - tanH) . (57)

Cos @

Similarly,
tanf

9
Cos @

P(zzlz) = (1 —tanyp)

15



and

tan ftan ¢

P(yzele) = P(zyzlz) = (59)

2cosp
It is stressed that these probabilities do not apply to the (countable) set of straight lines with
f and ¢ leading to rational ratios between Az, Ay and Az. For those lines yy and 2y are
periodic, and are not uniformly distributed.

If a 26-directional chain code is used, the links can be classified according to their length:
direct links of length 1, minor diagonal links of length v/2 and major diagonal links of length
V3. Let Py, P, and P; respectively denote the probability that a chain link picked at random
belongs to one of these classes. The relation between 6-directional and 26-directional 3-D

chain codes is simple for straight lines; it follows that

P = P(z|z) (60)
P, = P(yzlz)+ P(zz|z) (61)
Ps = P(yzelz)+ P(zyz|z). (62)

Explicitly, for 0 < ¢ < 7/4 and 0 < 6 < arctan (sin ¢),

tan @
P o= [1- 1 — tan 63
) < cosc,o) ( an ) (63)
tané tané
P, = (1-tangp) LA tan @ <1 _ o ) (64)
cos cos
P, = tanﬁtanc,o. (65)
cos

In the next section these results are applied to the optimal design of 3-D length estimators.

7 3-D Link Classification Length Estimators

This section focuses on optimal design of length estimators of the form
L = W Ny + UyNy + U3N; (66)

where Ny, Ny and N3 are the number of the direct, minor diagonal and major diagonal

links in the 26-directional chain code of the curve, and ¥, ¥y and W3 are the weights to be

16



designed. The estimation error is

L VN + YNy + W3 N3
(8, o) = I 1= 7 - 1. (67)

The number of links N in the 26-directional chain code representation of a long straight line
of length L is given by equation 12. Thus, for “almost all” angles in the domain 0 < ¢ < 7/4

and 0 < 6 < arctan (sin @),

Ny = NP, = L(cosfcosg—sinf) (1 —tanyp) (68)
Ny = NPy, = LJ(1-tanyp)sinf + tan ¢ (cosf cosep — sin §)] (69)
N3 = NP;= Lsinftanp. (70)

With ¥y = 1, ¥, = V2 and U5 = \/§’ the second estimator suggested in [5] is obtained
(equation 7). In the case of straight lines, the dependence of the estimation error of this
estimator on ¢ and 6 is shown in Figure 6. The estimation is clearly biased; in fact, the
length of straight lines is never underestimated. In the sequel a length estimator that is
unbiased for long straight lines (assuming uniform distribution of orientations) with the least
RM S error possible for unbiased estimators is developed.

Unbiasedness implies that
1 7/4 jarctansing
C (1, 0y, U3) = ﬁ/ / £ (8, ¢) cos 8d8dy = 0. (71)
0 0
Carrying out the integration yields:
C(V¥y,¥y,¥s3) = 0.299738V; + 0.394096¥; + 0.137358V¥5 — 1 = 0. (72)
¥y, ¥y and V3 must be chosen to minimize the RM S error, or equivalently its square
1 7/4 parctansing
ars (¥, 00,99) = 5 [ &% (ip,6) cos Bdfdp (73)
0 0

while satisfying the unbiasedness constraint (equation 72).
This constrained minimization problem can be solved by Lagrange optimization. The

Lagrangian is defined as
T (11,17 l1,27 \1!37 )\) = EMSE (\1,17 l1127 l113) + AC (11,17 l1,27 l1,3) (74)

17



where A is a Lagrange multiplier. The optimal solution satisfies

O;T(\pl,%,%,n =0 (75)
032T(\111,x1/2,x1;3,A) =0 (76)
%%T(wl,%,%,n =0 (77)
%T(xpl,%,%,n = 0. (78)

These conditions lead to the following set of linear equations:

011\1’1 + alglpg + alS\I’g + 02997)\ = ﬁl (79)
0421\1’1 + &22\112 + 0433\1’3 + 01374)\ = 52 (80)
0431\111 + &32\112 + 0433\113 + 0.3941) = ﬁg (81)

and to equation 72, where

7/4 parctansing . ]
a;; = Q/ / 7\ N cosf)d@dgp, (82)

and
9 m/4 parctansing .
= — — cos Bdfdp.
Q/o /0 7 cos @ (83)

This system of equations can be expressed in matrix form as follows, with {a;;} and {3;}

replaced by their numerical values:

[ 0203884 0.211097 0.0389764 0.299738 | [ . | [ 0.599476 |
0.211097  0.33871  0.100297 0.394096 | | W | _ | 0.78819 )
0.0389764 0.100297 0.0684386 0.137358 | | W, 0.274717

| 0.299738  0.394096  0.137358 o LAl | 1

The solution to the system is ¥; = 0.901588, ¥y = 1.28876, W3 = 1.61524, (and A =
—0.00165172). The unbiased length estimator with the least RM.S error is therefore

L = 0.9016 N, + 1.289N; + 1.615N. (85)

The dependence of the estimation error in the case of straight lines on # and ¢ is shown in

Figure 7. It is lower bounded by —9.84% and upper bounded by 4.59% . The RM S error of
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this estimator is 2.88%, a very significant improvement with respect to the 10% — 12% RM S
errors of the unbiased link counting estimators discussed in section 4, and with respect to the
RMS error of the biased link classification estimator suggested in reference [5] (equation 7),

which is also about 10%.

8 Experiments

To complement the analytical results, an experimental evaluation of these length estimators
in the case of circles in three dimensional space has been carried out. A generic experiment
consisted of placing a circle of known radius in the XY plane, centered at the origin. The
circle was rotated around the z and y axes at angles taken from a uniform distribution
between 0 and 7 in each coordinate, then translated in all three coordinates by random
values, taken from a uniform distribution between 0 to 1 in each coordinate. The circle was
then digitized, its chain code was obtained, and its perimeter was estimated by each of the
studied estimators and compared to the known radius of the original circle.

In practice, a set of 100 quintuples of randomly chosen transformation parameters has
been repeatedly used per each tested radius and each of the studied estimators. This means
that comparison of performance between estimators is always based on the same input circles.
About 25 radii between 1 and 100 were used, with increments down to 0.5 in the lower range,
up to 10 in the upper range.

The 100 outcomes per each radius and each tested estimator were processed to obtain the

following quantities:

e The average (percent) estimation error. For unbiased estimators, the average can be
expected to approach zero as the radius increases. For biased estimators the average is

expected to approach the bias.

e The maximum and minimum (percent) estimation errors among the 100 trials. These

indicate the variability of the estimates.

e The average of the absolute estimation errors (percent). This quantity is an important

quality indicator.
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Figure 8 shows the average error as a function of radius of the biased 26-directional
link counting length estimator, suggested in reference [5] (equation 6); the minimum and
maximum errors are also shown. Due to its large bias, this estimator is rather impractical
for most applications.

Figure 9 shows the average, minimum and maximum errors as a function of radius for
the unbiased version developed in this paper (equation 19) of the 26-directional link count-
ing length estimator. The performance is dramatically improved, and the average error
approaches zero as expected.

Figure 10 shows the average, minimum and maximum errors as a function of radius for
the unbiased 6-directional chain code link counting estimator (equation 25). The average
error is nearly zero even at very small radii.

The average absolute errors of the above three link counting estimators are compared in
Figure 11. It is clear that the performance of the biased estimator suggested in reference [5]
(equation 6) is greatly inferior with respect to the two unbiased estimators suggested here.
The unbiased estimator based on the 6-directional chain code is slightly but consistently
superior to the estimator based on the 26-directional code.

Figure 12 shows the average, maximum and minimum errors as a function of radius for the
(biased) link classification estimator (equation 7) suggested in reference [5]. Figure 13 shows
the average, maximum and minimum errors as a function of radius for the link-classification
estimator developed here (equation 85), which is the optimal unbiased estimator (for lines,
in the RM S error sense) among all estimators of the general form of equation 66.

The average absolute errors of these two link classification estimators (equations 7 and
85) are compared in Figure 14. The good performance of the latter estimator is pleasing
considering its simplicity.

Focusing on small radii, the average absolute errors of the three unbiased estimators devel-
oped in this paper are compared in Figure 15. The performance of the unbiased 26-directional
link counting estimator (equation 19) is inferior with respect to the other two, especially at
small radii. As expected, the link classification estimator (equation 85) is generally best, even

though the simple 6-directional chain link counting estimator (equation 25) performs well at
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small radii.

9 Discussion

This paper deals with optimal design of length estimators for curves in three dimensional space
from their chain codes. Only local estimators are considered, i.e., estimation algorithms in
which the contribution of each chain link to the total length estimate does not depend on
distant links. These include link counting estimators, with similar contribution for all links,
and link classification estimators, in which the properties of a link determine its contribution;
the latter have potential for better performance.

For reasons similar to those encountered in the design of 2-D perimeter estimators, 3-D
length estimators should be designed to be unbiased for straight lines of uniform orientations.
Unbiased length estimators can be expected to perform well on smooth curves with uniform
distribution of tangent orientations.

The weight of a chain link is the only free parameter in the design of link counting
estimators, so they are fully determined once the unbiasedness constraint is imposed. There
are more degrees of freedom in the design of link classification estimators, hence further
optimality criteria can be specified. The design goal of minimum RM S error for straight
lines that was taken in this paper is one of many possible choices. In particular, it seems
interesting to develop length estimators satisfying optimality criteria related to circular arcs.

The relation between the design of weights for length estimators and the design of local
distances for Fuclidean distance transformations has been considered in reference [1]. It has
been demonstrated that while the two problems are mathematically similar in 2-D, they are
inherently different in 3-D. In particular, the design of 3-D length estimators must be based on
theoretical analysis of chain code probabilities in three dimensional chain encoded lines, and is
thus more difficult than the design of 3-D distance transforms. Beyond the optimal estimators
themselves, an important contribution of this paper is therefore the theoretical prediction of
the number of direct, minor diagonal and major diagonal links (i.e., links of length 1, V2 and
V3 respectively) in the chain code of an arbitrarily oriented line in 3-D. These results can

be extended to enable prediction of the frequency of more complicated patterns in 3-D chain
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codes of lines, and provide a basis for the design of finer link classification length estimators.
The lack of results on chain code probabilities made it impossible for the authors of [5] to
optimize the design of their suggested estimators.

The experiments with perimeter estimation for circles in 3-D complement and validate the
analytical results. It is pleasing that the average error of unbiased estimators is close to zero
even at quite small radii, indicating the robustness of the suggested estimators. Indeed, finer
link classification estimators can be expected to perform better on smooth curves, but due to
the larger classification-support neighborhoods, their performance might rapidly deteriorate

as curvature increases.
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Figure 1: Link types in a 26-directional 3-D chain code: a direct link (parallel to one of the

main axes), a minor diagonal link and a major diagonal link.
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Figure 2: The definition of 8 and ¢.

26



[]
N
[J5
',"/ 7 ‘-"
e
W
Vi

Figure 3: The dependence of the estimation error (in the case of straight lines) on ¢ and 6 for
the biased 26-directional link counting estimator. The error is non-positive, i.e., the length

is never overestimated.
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Figure 4: The dependence of the estimation error (in the case of straight lines) on ¢ and

for the unbiased 26-directional link counting estimator.
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Figure 5: The dependence of the estimation error in the case of straight lines on ¢ and 8 for

the unbiased 6-directional link counting estimator.
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Figure 6: The dependence of the estimation error (in the case of straight lines) on ¢ and 6 for
the biased link classification estimator. The typical domain 0 < ¢ < 7/4,0 < # < arctansin ¢

is shown. The error is non-negative, i.e., the length is never underestimated.
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Figure 7: The dependence of the estimation error (in the case of straight lines) on ¢ and
for the unbiased link classification estimator. The typical domain 0 < ¢ < 7/4,0 < 8 <

arctan sin ¢ is shown.
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Figure 8: Perimeter estimation of circles in 3-D using the biased 26-directional link counting
estimator. The solid curve shows the average error (of 100 experiments) as a function of

radius. The dashed curves show the minimum and maximum errors encountered.
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Figure 9: Perimeter estimation of circles in 3-D using the unbiased 26-directional link count-
ing estimator developed in this paper. The solid curve shows the average error (of 100

experiments) as a function of radius. The dashed curves show the minimum and maximum

errors encountered.

33



error %

b
]
2071}
1
1

W
e

10t

Ssao - ———— -

-10+

P ettt R

]
-204m

Figure 10: Perimeter estimation of circles in 3-D using the unbiased 6-directional link count-
ing estimator developed in this paper. The solid curve shows the average error (of 100
experiments) as a function of radius. The dashed curves show the minimum and maximum

errors encountered.
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Figure 11: Perimeter estimation of circles in 3-D using link counting estimators. Average
absolute errors (of 100 experiments) as a function of radius are compared. The dotted curve
refers to the biased 26-directional link counting estimator. The dashed and solid curves
respectively refer to the unbiased 26-directional and 6-directional link counting estimators,

both developed in this paper.

35



error %

15+,
\
‘ -
|_-/ ------------
0 e
5l /e
, : : } . —radius
! 20 40 60 80 100
1
-5+ :
]
]
1011
i
]
-15¢!
]

Figure 12: Perimeter estimation of circles in 3-D using the biased 26-directional link classifi-
cation estimator. The solid curve shows the average error (of 100 experiments) as a function

of radius. The dashed curves show the minimum and maximum errors encountered.
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Figure 13: Perimeter estimation of circles in 3-D using the unbiased, minimum RM S error,
26-directional link classification estimator developed in this paper. The solid curve shows

the average error (of 100 experiments) as a function of radius. The dashed curves show the

minimum and maximum errors encountered.
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Figure 14: Perimeter estimation of circles in 3-D using link classification estimators. Average
absolute errors (of 100 experiments) as a function of radius are compared. The dotted curve
refers to the biased 26-directional link classification estimator. The solid curve refers to the

unbiased, minimum RM S error, 26-directional link classification estimator developed in this

paper.
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Figure 15: Perimeter estimation of circles in 3-D using the unbiased estimators developed
in this paper. Average absolute errors (of 100 experiments) as a function of radius are
compared. The dotted and dashed curves respectively refer to the unbiased 26-directional
and 6-directional link counting estimators. The solid curve refers to the unbiased, minimum

RM S error, 26-directional link classification estimator.
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